ANALISIS SENTIMEN RESPON PENGGUNA CHAT GPT MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE
Abstract
This study aims to analyze user sentiment toward ChatGPT based on comments collected from the YouTube platform using the Support Vector Machine (SVM) algorithm. SVM belongs to the supervised learning algorithm group. The data were collected through web scraping using the YouTube Data API v3, resulting in 999 valid comments. The initial process included data cleaning using regular expressions to remove irrelevant characters, duplicates, and noise. Sentiment correction was then performed using a bilingual lexicon-based function (Indonesian and English) to improve classification accuracy based on language context. The initial sentiment distribution analysis showed 53.85% positive, 33.53% negative, and 12.61% neutral sentiments. To address class imbalance, a balancing process was conducted before model training. The preprocessing stage involved feature normalization and feature selection before splitting the dataset into 70% training and 30% testing data. The SVM model was trained and evaluated using performance metrics such as accuracy, precision, recall, F1-score, and AUC. The evaluation results showed an AUC of 0.90, accuracy of 81.6%, precision of 89.2%, recall of 51.6%, and F1-score of 65.4%. Based on these results, the SVM algorithm proved effective in classifying user sentiments toward ChatGPT with a high level of accuracy after the data balancing process.
References
Aribowo, A. S., Basiron, H., Abd Yusof, N. F., & Khomsah, S. (2021). Cross-domain sentiment analysis model on Indonesian YouTube comment. International Journal of Advances in Intelligent Informatics, 7(1), 12–25. https://doi.org/10.26555/ijain.v7i1.554
Jamil, M., Hadiyanto, H., & Sanjaya, R. (2024). Sentiment analysis: Classifying public comments on YouTube in disaster management simulation in Indonesia using Naïve Bayes and support vector machine. Indonesian Journal of Science and Technology, 9(2), 289–302. https://doi.org/10.17509/ijost.v9i2.67884
Muhayat, T., Fauzi, A., & Indra, D. J. (2024). Analisis sentimen terhadap komentar video YouTube menggunakan support vector machines. Jurnal Ilmiah Teknik Informatika.
Rabbani, M. A. (2023). Evaluation of support vector machine, Naive Bayes, decision tree, and gradient boosting algorithms for sentiment analysis on ChatGPT Twitter dataset. Indonesian Journal of Artificial Intelligence and Data Mining, 7(2), 89–98.
Sakhdiah, M., Salma, A., Permana, D., & Fitria, D. (2024). Sentiment analysis using support vector machine (SVM) of ChatGPT application users in Play Store. UNP Journal of Statistics and Data Science, 2(2), 151–158. https://doi.org/10.24036/ujsds/vol2-iss2/158
Salsabila, A. (2024). Analisis sentimen ulasan aplikasi ChatGPT pada Google Play menggunakan metode support vector machine. Jurnal Ilmiah Teknik Informatika.
Septini, A. (2025). Analisis sentimen masyarakat di Twitter mengenai OpenAI ChatGPT menggunakan metode support vector machine (SVM). Bulletin of Computer Science Research, 5(2), 138–149. https://doi.org/10.47065/bulletincsr.v5i2.475
Syafa’at, M. H., Setyaningsih, E. R., & Kristian, Y. (2021). SVM untuk sentiment analysis calon kepala daerah berdasar data komentar video debat pilkada di YouTube. Antivirus: Jurnal Ilmiah Teknik Informatika, 15(2), 262–276. https://doi.org/10.35457/antivirus.v15i2.1539
Wilie, D. P. (2023). Analisis sentimen opini publik terhadap ChatGPT di Twitter menggunakan metode Naive Bayes. Jurnal Nasional Ilmu Komputer, 4(4), 201–210.
| Keywords | : |
Keywords:
Sentiment Analysis, Support Vector Machine (SVM), Data Preprocessing, Data Balancing, Classification Analisis Sentimen, Support Vector Machine (SVM), Preprocessing Data, Balancing Data, Klasifikasi
|
| Galleys | : | |
| Published | : |
2025-11-25
|
| How to Cite | : | |
| Issue | : |
Copyright (c) 2025 Angelina Safitri, Ilhan Firmansyah, Fitri Yani, Muhammad Arif Kurniawan, Yamin Nuryamin

This work is licensed under a Creative Commons Attribution 4.0 International License.












_SCCC.png)
