KLASIFIKASI IMAGE JENIS UBUR UBUR MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

Wildan Mufti Ma’arif ( Universtias Islam Negeri Sunan Ampel Surabaya )
Ramadhani Akbaru Rizqi ( Universtias Islam Negeri Sunan Ampel Surabaya )
Dwi Rolliawati ( Universtias Islam Negeri Sunan Ampel Surabaya )

Abstract

This study aims to classify jellyfish species based on visual images using the Convolutional Neural Network (CNN) method. The main challenge lies in the morphological similarities between species, making manual identification prone to errors. This research employs a dataset containing images of six jellyfish species: Moon Jellyfish, Blue Jellyfish, Mauve Stinger Jellyfish, Compass Jellyfish, Barrel Jellyfish, and Lion's Mane Jellyfish. The dataset undergoes preprocessing techniques such as normalization, dimension adjustment, and image augmentation.The designed CNN model consists of convolutional and pooling layers to recognize complex visual patterns. Model testing was conducted using validation and test datasets, achieving a classification accuracy of over 90%. These results demonstrate the effectiveness of the CNN method in addressing the challenges of automatic marine species identification.This study is expected to contribute to marine biodiversity conservation and support the development of AI-based technologies for ecosystem management. The implications include broader applications in marine species identification and environmental preservation.

References

Agung, A., Daniswara, A., Kadek, I., & Nuryana, D. (2023). Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru. Journal of Informatics and Computer Science, 05, 97–100. https://doi.org/10.26740/jinacs.v5n01.p97-100

Azmi, K., Defit, S., & Putra Indonesia YPTK Padang Jl Raya Lubuk Begalung-Padang-Sumatera Barat, U. (2023). Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat. 16(1), 2023. https://doi.org/10.52072/unitek.v16i1.504

Azzahra Nasution, D., Khotimah, H. H., & Chamidah, N. (2019). PERBANDINGAN NORMALISASI DATA UNTUK KLASIFIKASI WINE MENGGUNAKAN ALGORITMA K-NN (Vol. 4, Issue 1). https://doi.org/10.24114/cess.v4i1.11458

Emmert-Streib, F., & Dehmer, M. (2019). Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error. In Machine Learning and Knowledge Extraction (Vol. 1, Issue 1, pp. 521–551). MDPI. https://doi.org/10.3390/make1010032

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Iskandar Mulyana, D., Ainur Rofik, M., & Ohan Zoharuddin Zakaria, M. (2022). Klasifikasi Kendaraan pada Jalan Raya menggunakan Algoritma Convolutional Neural Network (CNN). https://doi.org/10.31004/jptam.v6i1.3179

Rahman, M. F., Ilham Darmawidjadja, M., & Alamsah, D. (2017). KLASIFIKASI UNTUK DIAGNOSA DIABETES MENGGUNAKAN METODE BAYESIAN REGULARIZATION NEURAL NETWORK (RBNN) (Vol. 11). https://doi.org/10.26555/jifo.v11i1.a5452

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. https://doi.org/10.48550/arXiv.1811.12808


Keywords  :  
Keywords: Convolutional Neural Networks, Deep Learning, Jellyfish Classification : Convolutional Neural Network; Deep Learning; Klasifikasi Ubur-Ubur.
Galleys  :  
Published  :  
2025-04-01
How to Cite  :  
Ma’arif, W. M., Rizqi, R. A., & Rolliawati, D. (2025). KLASIFIKASI IMAGE JENIS UBUR UBUR MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). Jurnal Inovasi Pendidikan Dan Teknologi Informasi (JIPTI), 6(1), 85–97. https://doi.org/10.52060/jipti.v6i1.2632
Issue  :