Volume 6 No. 2, November (2025)

E-ISSN: 2720-9725 P-ISSN: 2987-8462

IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN PESERTA PERTUKARAN PELAJAR DI SMAN 1 PADANG PANJANG DENGAN METODE AHP

Habibatul Fadhilah^{1*}, Yulifda Elin Yuspita², Firdaus Annas³, Gusnita Darmawati⁴
UIN Sjech M. Djamil Djambek Bukittinggi¹²³
E-mail: dilahfn2713@gmail.com^{1*}

Abstrak

Tujuan dari penelitian ini adalah untuk mengimplementasikan Sistem Pendukung Keputusan (SPK) berbasis metode *Analytical Hierarchy Process* (*AHP*) guna mendukung proses seleksi peserta program pertukaran pelajar secara objektif dan terukur. Latar belakang penelitian ini dilandasi oleh adanya permasalahan dalam proses seleksi yang masih bersifat subjektif dan kurang transparan, sehingga menimbulkan kebingungan serta ketidakpuasan di kalangan siswa dan orang tua. Sistem ini untuk menyusun hierarki kriteria dan alternatif serta menghitung bobot prioritas masing-masing siswa dengan menggunakan metode *AHP*. Pengolahan data dilakukan melalui dua pendekatan, yaitu perhitungan manual dan bantuan aplikasi *Super Decisions* untuk membandingkan kesesuaian hasil. Hasil penelitian menunjukkan bahwa kedua pendekatan menghasilkan bobot dan peringkat yang identik. Oleh karena itu, SPK berbasis *AHP* ini dinilai mampu memberikan hasil yang akurat, efisien, dan layak diterapkan sebagai solusi untuk meningkatkan objektivitas, transparansi, dan efisiensi dalam proses seleksi peserta program pertukaran pelajar di lingkungan sekolah.

Kata Kunci: Sistem Pendukung Keputusan; Pertukaran Pelajar, Metode *AHP*.

Abstract

The purpose of this study is to implement a Decision Support System (DSS) based on the Analytical Hierarchy Process (AHP) method to support the selection process of student exchange program participants in an objective and measurable manner. The background of this research is based on problems in the selection process, which are still subjective and lack transparency, causing confusion and dissatisfaction among students and parents. The system is designed to structure the hierarchy of criteria and alternatives, as well as calculate the priority weight of each student using the AHP method. Data processing was carried out through two approaches, namely manual calculation and the use of the Super Decisions application to compare the consistency of the results. The findings show that both approaches produced identical weights and rankings. Therefore, the AHP-based DSS is considered capable of

429

Habibatul Fadhilah, Yulifda Elin Yuspita, Firdaus Annas, Gusnita Darmawati. (2025). IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN PESERTA PERTUKARAN PELAJAR DI SMAN 1 PADANG PANJANG DENGAN METODE AHP. *Jurnal Inovasi Pendidikan dan Teknologi Informasi (JIPTI)*, 6(2), 429-441. https://doi.org/10.52060/jipti.v6i2.3633

providing accurate and efficient results, and is feasible to be implemented as a solution to improve objectivity, transparency, and efficiency in the selection process of student exchange program participants in the school environment.

Keywords: *Decision Support System; Student Exchange; AHP Method.*

Submitted: 2025-09-08. Revision: 2025-09-15. Accepted: 2025-10-20. Publish: 2025-11-02.

PENDAHULUAN

Decision Support System (DSS) dibuat untuk membantu dalam proses pengambilan keputusan rumit yang memerlukan pertimbangan matang. (Zakir, 2015). Dalam dunia pendidikan, SPK memiliki peran penting dalam berbagai aspek, mulai dari penentuan kurikulum, evaluasi kinerja tenaga pendidik, hingga pemilihan siswa untuk program-program khusus seperti pertukaran pelajar. SPK memungkinkan proses seleksi dilakukan secara objektif dengan memanfaatkan data yang terstruktur, mengurangi subjektivitas, dan meningkatkan efisiensi pengambilan keputusan (Sufi et al., 2023).

Sebagaimana disebutkan dalam ayat 11 QS Al-Mujadilah, Allah SWT mengangkat derajat orang-orang yang beriman dan berakhlak. Ini memperkuat pentingnya penghargaan terhadap siswa yang berusaha menuntut ilmu, termasuk melalui program pertukaran pelajar. Oleh karena itu, diperlukan proses seleksi yang terstruktur dan adil.

SPK dengan metode *Analytic Hierarchy Process (AHP)* merupakan teknik yang efektif untuk pengambilan keputusan (Annas et al., 2021). *AHP* memungkinkan para pengambil keputusan untuk mengevaluasi beberapa faktor secara

terorganisasi dengan menguraikan masalahmasalah rumit menjadi komponenkomponen yang lebih kecil. (Kurnia, 2021). Melalui perbandingan berpasangan, AHP memberikan bobot pada setiap kriteria sesuai tingkat kepentingannya, sehingga keputusan yang dihasilkan lebih sistematis, objektif, dan akurat. Dalam konteks seleksi peserta pertukaran pelajar, AHP dapat digunakan untuk menilai berbagai kriteria seperti kemampuan bahasa, kemampuan menulis esai, serta keterampilan kerja sama tim (Ahmad Faisol et al., 2014).

SMAN 1 Padang Panjang merupakan salah satu sekolah unggulan yang rutin mengadakan program pertukaran pelajar ke negara tujuan seperti Jepang dan Amerika Serikat. Program ini tidak hanya memperluas wawasan global siswa, tetapi juga meningkatkan keterampilan akademik dan sosial. Namun, proses seleksi yang berjalan saat ini masih menghadapi kendala, antara lain kurangnya transparansi serta potensi subjektivitas adanya dalam penilaian. Berdasarkan wawancara dengan pihak sekolah, seleksi didasarkan pada tiga kriteria utama: kemampuan bahasa Inggris (20%), kemampuan menulis esai (20%), dan kerja sama tim (60%). Meskipun kriteria telah ditetapkan, tanpa adanya sistem pendukung keputusan yang terstruktur, proses seleksi tetap rentan terhadap bias dan ketidakakuratan.

Urgensi penelitian ini terletak pada kebutuhan untuk menciptakan proses seleksi yang objektif, transparan, dan efisien dalam menentukan peserta program pertukaran pelajar. Proses yang tidak terstruktur menimbulkan berpotensi ketidakpuasan siswa dan orang tua, serta mengurangi kepercayaan terhadap sistem seleksi sekolah. Sementara itu, kebaruan penelitian ini adalah penerapan metode AHP dalam membangun SPK khusus untuk seleksi program pertukaran pelajar di tingkat SMA, yang masih jarang dikaji dalam penelitian sebelumnya. Dengan menggabungkan perhitungan manual dan aplikasi Super Decisions sebagai validasi silang, penelitian ini memberikan kontribusi metodologis sekaligus praktis.

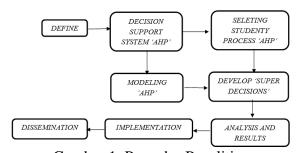
Dengan demikian, tujuan penelitian ini adalah mengimplementasikan SPK berbasis metode *AHP* untuk mendukung proses seleksi peserta pertukaran pelajar di SMAN 1 Padang Panjang. Sistem ini diharapkan mampu meningkatkan akurasi, objektivitas, serta memberikan kesempatan yang sama bagi setiap siswa sesuai kriteria yang telah ditentukan.

METODE PENELITIAN

A. Waktu dan Tempat Penelitian

Penelitian ini dilakukan di SMAN 1 Padang Panjang pada bulan Desember 2024 hingga Mei 2025, yang dipilih dengan mempertimbangkan keadaan dan fasilitas yang memadai di sekolah guna memudahkan eksplorasi secara efektif.

B. Jenis Penelitian


Salah satu teknik untuk mengambil keputusan adalah Analytical Hierarchy Process (AHP), yang memecah masalah sulit menjadi masalah yang lebih kecil. (Naldo et al., 2022). Dalam AHP, sebuah masalah dipecah menjadi beberapa komponen atau kriteria, dan setiap kriteria dibandingkan satu per satu untuk mendapatkan prioritas atau bobot relatif 2005). (Kardi, Thomas L. Saaty menciptakan pendekatan ini pada tahun 1970-an, dan sejak itu telah digunakan secara luas dalam berbagai disiplin ilmu, seperti penelitian, teknik, dan manajemen. (Efriyanti et al., 2022).

AHP bekerja dengan mengorganisir masalah ke dalam struktur hierarki yang terdiri dari tuiuan utama. kriteria. subkriteria, alternatif dan keputusan (Nurhalizah Nst et al., 2023). Setelah struktur hierarki terbentuk, proses penilaian dilakukan dengan membandingkan setiap elemen secara berpasangan menggunakan skala preferensi numerik yang dikembangkan oleh Saaty. Hasil dari perbandingan ini kemudian diolah untuk memperoleh bobot prioritas yang menunjukkan relevansi relatif setiap elemen dalam pengambilan keputusan (Rozali et al., 2023).

C. Prosedur Penelitian

Untuk menerapkan Sistem Pendukung Keputusan (SPK) dalam menentukan peserta pertukaran pelajar di SMAN 1 Padang Panjang menggunakan metode *AHP*,

penelitian ini akan mengikuti langkahlangkah yang berfokus pada penggunaan *AHP* sebagai metode pengambilan keputusan multi-kriteria.

Gambar 1. Prosedur Penelitian

HASIL DAN PEMBAHASAN

Hasil Penelitian

A. Tabel Kriteria

SMAN 1 Padang Panjang menetapkan 3 kriteria dalam pemilihan calon perwakilan peserta pertukaran pelajar.

Tabel 1. Kriteria

No	Kode	Kriteria	Nilai
1	KBI	Kemampuan Berbahasa Inggris	20%
2	KME	Kemampuan Menulis Essay	20%
3	KKST	Kemampuan Kerja Sama Tim	60%

B. Tabel Alternatif

Tabel alternatif berisi nama dan data nilai peserta didik yang mendaftar untuk mengikuti kegiatan pertukaran pelajar.

Tabel 2. Alternatif

No	Kode	Alternatif	KBI	KME	KKST
1	AC	Aulia Chantika	70	80	60
2	AM	Ahmad Mahendra	80	70	70
3	AP	Arvino Prasetya	90	80	70

AS	Amanda Salsabila	60	60	80
CM	Citra Malika	80	90	80
DK	Dewi Khairani	60	60	60
DP	Dimas Pratama	60	70	80
FD	Farel Dirgantara	90	90	80
FM	Fitra Murni	70	60	70
HA	Hafiz Alfarizi	60	70	70
RAA	Rafifah Asylah Ashadi	70	70	90
KA	Kevin Alvaro	60	70	70
NA	Naura Arifa	90	80	90
MR	Meisya Rahmadani	80	80	70
MF	Muhammad Fikri	60	60	60
NK	Nayla Kiranan	80	90	80
PNM	Puteri Nabila Marfa	70	60	70
RA	Reina Azzahra	60	60	60
TS	Tiara Savitri	70	70	80
ZH	Zikri Hanif	70	60	70
	CM DK DP FD FM HA RAA NA MR MF NK PNM RA TS	CM Citra Malika DK Dewi Khairani DP Dimas Pratama FD Farel Dirgantara FM Fitra Murni HA Hafiz Alfarizi RAA Rafifah Asylah Ashadi KA Kevin Alvaro NA Naura Arifa MR Meisya Rahmadani MF Muhammad Fikri NK Nayla Kiranan PNM Puteri Nabila Marfa RA Reina Azzahra TS Tiara Savitri	CM Citra Malika 80 DK Dewi Khairani 60 DP Dimas Pratama 60 FD Farel Dirgantara 90 FM Fitra Murni 70 HA Hafiz Alfarizi 60 RAA Rafifah Asylah Ashadi 70 KA Kevin Alvaro 60 NA Naura Arifa 90 MR Meisya Rahmadani 80 MF Muhammad Fikri 60 NK Nayla Kiranan 80 PNM Puteri Nabila Marfa RA Reina Azzahra 60 TS Tiara Savitri 70	CM Citra Malika 80 90 DK Dewi Khairani 60 60 DP Dimas Pratama 60 70 FD Farel Dirgantara 90 90 FM Fitra Murni 70 60 HA Hafiz Alfarizi 60 70 RAA Rafifah Asylah Ashadi 70 70 KA Kevin Alvaro 60 70 NA Naura Arifa 90 80 MR Meisya Rahmadani 80 80 MF Muhammad Fikri 60 60 NK Nayla Kiranan 80 90 PNM Puteri Nabila Marfa 70 60 RA Reina Azzahra 60 60 TS Tiara Savitri 70 70

C. Matriks Perbandingan Berpasangan (Kriteria)

Langkah-langkah dalam menghitung perbandingan ini didasarkan pada rumus *AHP*. Rumus *AHP* digunakan untuk menemukan kualitas pada alternatif dan kriteria.

Tabel 3. Matriks Perbandingan Berpasangan (Kriteria)

Kriteria	KBI	KME	KKST
KBI	1	1	1/3
KME	1	1	1/3
KKST	3	3	1

D. Matriks Normalisasi Kriteria dan Bobot

Selanjutnya nilai-nilai dalam matriks di ubah kedalam bilangan desimal, menjumlahkan kolom pada matriks, hitung

nilai elemen kolom kriteria dengan rumus: jumlahkan setiap baris dari hasil sebelumnya perhitungan dapat dinyatakan benar ataukah tidak. Validasi kriteria dan bobot kriteria.

dan dibagi dengan

jumlah kriteria.

Tabel 4. Matriks Normalisas i Kriteria dan Bobot

KBI	AC	AM	AP	AS	CM	DK	DP	FD	FM	HA	RAA	KA	NA	MR	MF	NK	PNM	RA	TS	ZH
AC	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
AM	3	1	0.33	5	1	5	5	0.33	3	5	3	5	0.33	1	5	1	3	5	3	3
AP	5	3	1	7	3	7	7	1	5	7	5	7	1	3	7	3	5	7	5	5
AS	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
CM	3	1	0.33	5	1	5	5	0.33	3	5	3	5	0.33	1	5	1	3	5	3	3
DK	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
DP	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
FD	5	3	1	7	3	7	7	1	5	7	5	7	1	3	7	3	5	7	5	5
FM	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
HA	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
RAA	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
KA	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
NA	5	3	1	7	3	7	7	1	5	7	5	7	1	3	7	3	5	7	5	5
MR	3	1	0.33	5	1	5	5	0.33	3	5	3	5	0.33	1	5	1	3	5	3	3
MF	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.2	0.33	1	0.33	0.33
NK	3	1	0.33	5	1	5	5	0.33	3	5	3	5	0.33	1	5	1	3	5	3	3
PNM	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
RA	0.33	0.20	0.14	1	0.20	1	1	0.14	0.33	1	0.33	1	0.14	0.20	1	0.20	0.33	1	0.33	0.33
TS	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
ZH	1	0.33	0.20	3	0.33	3	3	0.20	1	3	1	3	0.20	0.33	3	0.33	1	3	1	1
Jumlah	35.33	16.40	6.53	66.00	16.40	66.00	66.00	6.53	35.33	66.00	35.33	66.00	6.53	16.40	66.00	16.40	35.33	66.00	35.33	35.33

									Nilai	Eigen										Jumlah	Rata- Rata
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
0.085	0.061	0.051	0.076	0.061	0.076	0.076	0.051	0.085	0.076	0.085	0.076	0.051	0.061	0.076	0.061	0.085	0.076	0.085	0.085	1.437	0.07184
0.142	0.183	0.153	0.106	0.183	0.106	0.106	0.153	0.142	0.106	0.142	0.106	0.153	0.183	0.106	0.183	0.142	0.106	0.142	0.142	2.782	0.13912
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.085	0.061	0.051	0.076	0.061	0.076	0.076	0.051	0.085	0.076	0.085	0.076	0.051	0.061	0.076	0.061	0.085	0.076	0.085	0.085	1.437	0.07184
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.142	0.183	0.153	0.106	0.183	0.106	0.106	0.153	0.142	0.106	0.142	0.106	0.153	0.183	0.106	0.183	0.142	0.106	0.142	0.142	2.782	0.13912
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.142	0.183	0.153	0.106	0.183	0.106	0.106	0.153	0.142	0.106	0.142	0.106	0.153	0.183	0.106	0.183	0.142	0.106	0.142	0.142	2.782	0.13912
0.085	0.061	0.051	0.076	0.061	0.076	0.076	0.051	0.085	0.076	0.085	0.076	0.051	0.061	0.076	0.061	0.085	0.076	0.085	0.085	1.437	0.07184
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.085	0.061	0.051	0.076	0.061	0.076	0.076	0.051	0.085	0.076	0.085	0.076	0.051	0.061	0.076	0.061	0.085	0.076	0.085	0.085	1.437	0.07184
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
0.009	0.012	0.022	0.015	0.012	0.015	0.015	0.022	0.009	0.015	0.009	0.015	0.022	0.012	0.015	0.012	0.009	0.015	0.009	0.009	0.277	0.01385
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
0.028	0.020	0.031	0.045	0.020	0.045	0.045	0.031	0.028	0.045	0.028	0.045	0.031	0.020	0.045	0.020	0.028	0.045	0.028	0.028	0.661	0.03306
																					1.000

Kriteria	KBI	KME	KKST	Nila	ni Eige	en	Jumlah	Rata- Rata	λта	$x = \sum (jumlah \ seluruh \ \lambda i)$ = $(5 \times 0, 2) + (5 \times 0, 2) + (1,67 \times 0,6)$
KBI	1	1	0.33	0.2	0.2	0.2	0.6	0.2		$= (3 \times 6, 2) + (3 \times 6, 2) + (1, 6) \times 6, 6)$ $= 1 + 1 + 1 = 3$
KME	1	1	0.33	0.2	0.2	0.2	0.6	0.2		
KKST	3	3	1	0.6	0.6	0.6	1.8	0.6	CI	$= (\lambda max - n)/(n-1)$
Jumlah	5	5	1.67					1	_	= (3-3)/(3-1) = 0/2 = 0
									CR	= CI/RI = 0/0.58 = 0

Setelah didapatkan nilai rata-rata dan jumlah, dilakukan proses mencari nilai λmax, CI dan CR untuk menentukan apakah

E. Matriks Perbandingan Berpasangan Kriteria Kemampuan Berbahasa Inggris (KBI)

Metode dan rumus yang digunakan matriks perbandingan berpasangan untuk alternatif ini sama seperti metode atau rumus menentukan nilai rata-rata atau bobot kriteria sebelumnya.

Tabel 5. Matriks Perbandingan Berpasangan Kriteria Kemampuan Berbahasa Inggris (KBI) Validasi perbandingan berpasangan kriteria kemampuan berbahasa inggris.

$$\lambda max = 20,85$$

$$CI = 0.04$$

$$CR = 0.03$$

Perhitungan dianggap akurat karena nilai CR < 0.1.

									r -				r		,	\	_,			
KME	AC	AM	AP	AS	CM	DK	DP	FD	FM	HA	RAA	KA	NA	MR	MF	NK	PNM	RA	TS	ZH
AC	1	3	1	5	0.33	5	3	0.33	5	3	3	3	1	1	5	0.33	5	5	3	5
AM	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
AP	1	3	1	5	0.33	5	3	0.33	5	3	3	3	1	1	5	0.33	5	5	3	5
AS	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
CM	3	5	3	7	1	7	5	1	7	5	5	5	3	3	7	1	7	7	5	7
DK	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
DP	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
FD	3	5	3	7	1	7	5	1	7	5	5	5	3	3	7	1	7	7	5	7
FM	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
HA	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
RAA	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
KA	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
NA	1	3	1	5	0.33	5	3	0.33	5	3	3	3	1	1.00	5	0.33	5	5	3	5
MR	1	3	1	5	0.33	5	3	0.33	5	3	3	3	1	1	5	0.33	5	5	3	5
MF	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
NK	3	5	3	7	1	7	5	1	7	5	5	5	3	3	7	1	7	7	5	7
PNM	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
RA	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
TS	0.33	1	0.33	3	0.20	3	1	0.20	3	1	1	1	0.33	0.33	3	0.20	3	3	1	3
ZH	0.20	0.33	0.20	1	0.14	1	0.33	0.14	1	0.33	0.33	0.33	0.20	0.20	1	0.14	1	1	0.33	1
Jumlah	16.40	35.33	16.40	66.00	6.53	66.00	35.33	6.53	66.00	35.33	35.33	35.33	16.40	16.40	66.00	6.53	66.00	66.00	35.33	66.00

																				_	_
									Nilai	Eigen										Jumlah	Rata- Rata
0.061	0.085	0.061	0.076	0.051	0.076	0.085	0.051	0.076	0.085	0.085	0.085	0.061	0.061	0.076	0.051	0.076	0.076	0.085	0.076	1.437	0.07184
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.061	0.085	0.061	0.076	0.051	0.076	0.085	0.051	0.076	0.085	0.085	0.085	0.061	0.061	0.076	0.051	0.076	0.076	0.085	0.076	1.437	0.07184
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.183	0.142	0.183	0.106	0.153	0.106	0.142	0.153	0.106	0.142	0.142	0.142	0.183	0.183	0.106	0.153	0.106	0.106	0.142	0.106	2.782	0.13912
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.183	0.142	0.183	0.106	0.153	0.106	0.142	0.153	0.106	0.142	0.142	0.142	0.183	0.183	0.106	0.153	0.106	0.106	0.142	0.106	2.782	0.13912
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.061	0.085	0.061	0.076	0.051	0.076	0.085	0.051	0.076	0.085	0.085	0.085	0.061	0.061	0.076	0.051	0.076	0.076	0.085	0.076	1.437	0.07184
0.061	0.085	0.061	0.076	0.051	0.076	0.085	0.051	0.076	0.085	0.085	0.085	0.061	0.061	0.076	0.051	0.076	0.076	0.085	0.076	1.437	0.07184
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.183	0.142	0.183	0.106	0.153	0.106	0.142	0.153	0.106	0.142	0.142	0.142	0.183	0.183	0.106	0.153	0.106	0.106	0.142	0.106	2.782	0.13912
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
0.020	0.028	0.020	0.045	0.031	0.045	0.028	0.031	0.045	0.028	0.028	0.028	0.020	0.020	0.045	0.031	0.045	0.045	0.028	0.045	0.661	0.03306
0.012	0.009	0.012	0.015	0.022	0.015	0.009	0.022	0.015	0.009	0.009	0.009	0.012	0.012	0.015	0.022	0.015	0.015	0.009	0.015	0.277	0.01385
-																					1.000

F. Matriks Perbandingan Berpasangan Kriteria Kemampuan Menulis Essay (KME)

Tabel 6. Matriks Perbandingan Berpasangan Kriteria Kemampuan Menulis Essay (KME) Validasi perbandingan berpasangan kriteria kemampuan menulis essay.

$$\lambda max = 20,85$$

$$CI = 0.04$$

CR = 0.03

(KKST)

Perhitungan dianggap akurat karena nilai CR < 0.1.

																	,			
KKST	AC	AM	AP	AS	CM	DK	DP	FD	FM	HA	RAA	KA	NA	MR	MF	NK	PNM	RA	TS	ZH
AC	1	0.33	0.33	0.20	0.20	1	0.20	0.20	0.33	0.33	0.14	0.33	0.14	0.33	1	0.20	0.33	1	0.20	0.33
AM	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
AP	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
AS	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
CM	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
DK	1	0.33	0.33	0.20	0.20	1	0.20	0.20	0.33	0.33	0.14	0.33	0.14	0.33	1	0.20	0.33	1	0.20	0.33
DP	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
FD	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
FM	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
HA	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
RAA	7	5	5	3	3	7	3	3	5	5	1	5	1	5	7	3	5	7	3	5
KA	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
NA	7	5	5	3	3	7	3	3	5	5	1	5	1	5	7	3	5	7	3	5
MR	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
MF	1	0.33	0.33	0.20	0.20	1	0.20	0.20	0.33	0.33	0.14	0.33	0.14	0.33	1	0.2	0.33	1	0.20	0.33
NK	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
PNM	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
RA	1	0.33	0.33	0.20	0.20	1	0.20	0.20	0.33	0.33	0.14	0.33	0.14	0.33	1	0.20	0.33	1	0.20	0.33
TS	5	3	3	1	1	5	1	1	3	3	0.33	3	0.33	3	5	1	3	5	1	3
ZH	3	1	1	0.33	0.33	3	0.33	0.33	1	1	0.20	1	0.20	1	3	0.33	1	3	0.33	1
Jumlah	72.00	37.33	37.33	15.47	15.47	72.00	15.47	15.47	37.33	37.33	6.17	37.33	6.17	37.33	72.00	15.47	37.33	72.00	15.47	37.33

									Nilai l	Eigen										Jumlah	Rata- Rata
0.014	0.009	0.009	0.013	0.013	0.014	0.013	0.013	0.009	0.009	0.023	0.009	0.023	0.009	0.014	0.013	0.009	0.014	0.013	0.009	0.251	0.01254
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.014	0.009	0.009	0.013	0.013	0.014	0.013	0.013	0.009	0.009	0.023	0.009	0.023	0.009	0.014	0.013	0.009	0.014	0.013	0.009	0.251	0.01254
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.097	0.134	0.134	0.194	0.194	0.097	0.194	0.194	0.134	0.134	0.162	0.134	0.162	0.134	0.097	0.194	0.134	0.097	0.194	0.134	2.948	0.14741
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.097	0.134	0.134	0.194	0.194	0.097	0.194	0.194	0.134	0.134	0.162	0.134	0.162	0.134	0.097	0.194	0.134	0.097	0.194	0.134	2.948	0.14741
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.014	0.009	0.009	0.013	0.013	0.014	0.013	0.013	0.009	0.009	0.023	0.009	0.023	0.009	0.014	0.013	0.009	0.014	0.013	0.009	0.251	0.01254
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
0.014	0.009	0.009	0.013	0.013	0.014	0.013	0.013	0.009	0.009	0.023	0.009	0.023	0.009	0.014	0.013	0.009	0.014	0.013	0.009	0.251	0.01254
0.069	0.080	0.080	0.065	0.065	0.069	0.065	0.065	0.080	0.080	0.054	0.080	0.054	0.080	0.069	0.065	0.080	0.069	0.065	0.080	1.417	0.07083
0.042	0.027	0.027	0.022	0.022	0.042	0.022	0.022	0.027	0.027	0.032	0.027	0.032	0.027	0.042	0.022	0.027	0.042	0.022	0.027	0.575	0.02875
																					1.000

G. Matriks Perbandingan Berpasangan Kriteria Kemampuan Kerja Sama Tim (KKST)

Tabel 7. Matriks Perbandingan Berpasangan Kriteria Kemampuan Kerja Sama Tim Validasi perbandingan berpasangan kriteria kemampuan kerja sama tim.

$$\lambda max = 20,59$$

$$CI = 0.03 \ CR = 0.02$$

Perhitungan dianggap akurat karena nilai CR < 0.1.

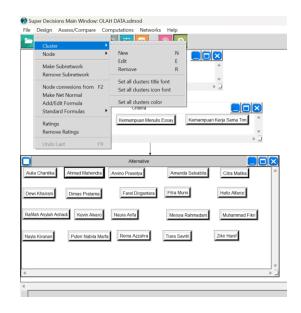
H. Perangkingan

Setelah semua alternatif diproses dan dianalisis, seluruh rekapitulasi nilai yang diperoleh dari total bobot masing-masing alternatif disajikan pada tabel 8 di bawah.

Tabel 8. Perangkingan

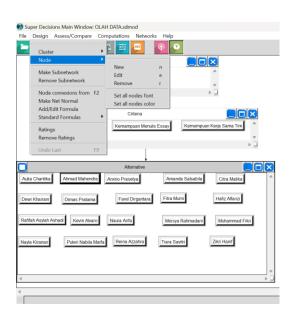
1 40	ei 6. i erangkingan	-	-
Kode	Alternatif	Hasil Akhir	Rank
		· ·	
AC	Aulia Chantika	0.02850431	13
AM	Ahmad Mahendra	0.03823064	11
AP	Arvino Prasetya	0.05944305	6
AS	Amanda Salsabila	0.04803857	9
CM	Citra Malika	0.08468844	4
DK	Dewi Khairani	0.01306685	20
DP	Dimas Pratama	0.05187945	8
FD	Farel Dirgantara	0.09814516	3
FM	Fitra Murni	0.02663406	12
HA	Hafiz Alfarizi	0.02663406	14
RAA	Rafifah Asylah	0.10166815	2
KAA	Ashadi		
KA	Kevin Alvaro	0.02663406	15
NA	Naura Arifa	0.13063626	1
MR	Meisya Rahmadani	0.04598634	10
MF	Muhammad Fikri	0.01306685	19
NK	Nayla Kiranan	0.08468844	5
PNM	Puteri Nabila Marfa	0.02663406	16
RA	Reina Azzahra	0.01306685	18
TS	Tiara Savitri	0.05572033	7
ZH	Zikri Hanif	0.02663406	17
		1.00000000	

Dari total peringkat tersebut, dapat disimpulkan bahwa perwakilan peserta pertukaran pelajar dari SMAN 1 Padang Panjang diwakili oleh Naura Arifa (NA) dengan hasil akhir 0.13063626 dan Rafifah


Asylah Ashadi (RAA) dengan hasil akhir 0.10166815.

I. Olah Data Menggunakan Aplikasi Super Decision

Selain dengan menggunakan cara manual, juga dilakukan penilaian dengan menggunakan aplikasi *Super Decisions*.

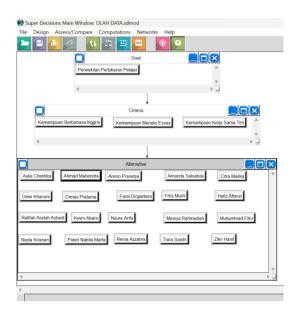

Langkah-langkah penggunaan aplikasi Super Decision adalah sebagai berikut:

a. Pada tampilan awal aplikasi, pilih design untuk men design tujuan, kriteria dan alternatif. Pilih *cluster* untuk membuat ruang masing-masing dari tujuan, kriteria dan alternatif.


Gambar 2. Cluster

b. Pilih *node* untuk memasukkan apa saja tujuan, kriteria dan alternatif yang akan di uji.

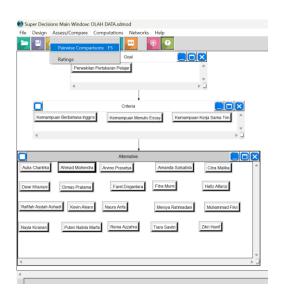
Gambar 3. Node


c. Pilih *Node connections from F2* untuk membuat hubungan antara tujuan, kriteria dan alternatif.

Gambar 4. *Node Connections From* F2

d. Berikut adalah tampilan dari bagan atau hubungan antara tujuan, kriteria dan

alternatif dari sistem pertukaran pelajar di SMAN 1 Padang Panjang.

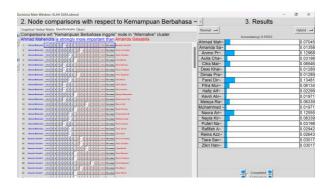

Gambar 5. Bagan

Bagan ini menunjukkan hubungan atau relasi antara tujuan dengan masing-masing kriteria, dan hubungan antara masing-masing kriteria dengan semua alternatif.

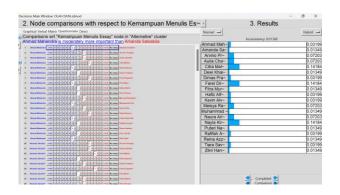
Tujuan → Kriteria: Menunjukkan bahwa kriteria tersebut digunakan untuk mencapai tujuan (memilih siswa terbaik sebagai perwakilan).

Kriteria → Alternatif: Menunjukkan bahwa alternatif akan dinilai berdasarkan masing-masing kriteria.

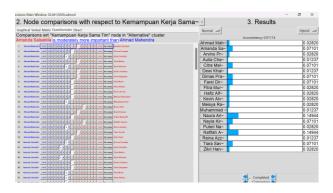
e. Selanjutnya pilih *pairwise comparison* untuk memasukkan data dari perbandingan kriteria dan alternatif.


Gambar 6. Pairwise Comparisons

f. Pada bagian *node*, pilih perwakilan pertukaran pelajar untuk mengisi data perbandingan berpasangan dari kriteria.


Gambar 7. *Node* Perwakilan Pertukaran Pelajar

g. Selanjutnya pilih KBI untuk mengisi data perbandingan berpasangan dari alternatif terhadap kriteria kemampuan berbahasa inggris (KBI).


Gambar 8. Node KBI

h. Selanjutnya pilih KME untuk mengisi data perbandingan berpasangan dari alternatif terhadap kriteria kemampuan menulis essay (KME).

Gambar 9. Node KME

 Selanjutnya pilih KKST untuk mengisi data perbandingan berpasangan dari alternatif terhadap kriteria kemampuan kerja sama tim (KKST).

Gambar 10. Node KKST

j. Setelah melakukan semua proses tersebut, pilih Synthesize pada tampilan awal aplikasi Super Decisions, untuk menjalankan program.

Gambar 11. Synthesize

k. Setelah program dijalankan oleh aplikasi, kita akan mendapatkan tabel hasil seperti gambar 12.

Graphic	Alternatives	Total	Normal	Ideal	Ranking
	Ahmad Mahendra	0.0187	0.0374	0.2896	11
	Amanda Salsabila	0.0240	0.0480	0.3717	9
	Arvino Prasetya	0.0286	0.0573	0.4433	6
	Aulia Chantika	0.0141	0.0282	0.2185	13
	Citra Malika	0.0424	0.0849	0.6570	4
	Dewi Khairani		0.0127		20
	Dimas Pratama		0.0516		8
	Farel Dirgantara		0.0979		3
	Fitra Murni		0.0319		12
	Hafiz Alfarizi		0.0279		14
	Kevin Alvaro	0.0136			15
	Meisya Rahmadani		0.0440		
	Muhammad Fikri Naura Arifa		0.0141		
			0.1292		5
	Nayla Kiranan Puteri Nabila Marfa		0.0836		16
	Rafifah Asylah Ashadi				2
	Reina Azzahra		0.1015		18
	Tiara Savitri		0.0550		7
	Zikri Hanif	0.0128	0.0257	0.1986	17
Ahmad Mahendra		0.28	39587In	037408	0.018704
Amanda Salsabila					0.024009
Arvino Prasetya					0.024631
Aulia Chantika					0.028031
Citra Malika					0.014112
Dewi Khairani					0.006349
Dimas Pratama					0.025790
Farel Dirgantara					0.048967
Fitra Murni					0.015943
Hafiz Alfarizi		0.21	16103 0.	027915	0.013958
Kevin Alvaro		0.21	11035 0.	027261	0.013630
Meisya Rahmadan	i	0.34	40639 0.	044003	0.022001
Muhammad Fikri		0.10	0.8865	014063	0.007031
Naura Arifa		1.00	00000	129177	0.064589
Nayla Kiranan		0.64	47559 0.	083650	0.041825
Puteri Nabila Marf	a a	-			0.013007
Rafifah Asylah Ash	adi	0.78	39189 0	101945	0.050973
Reina Azzahra					0.007703
Tiara Savitri					0.027518
Zikri Hanif					0.027318
ZIKII Hanif		0.19	98592 0.	025654	0.012827

Gambar 12. Hasil

Dari gambar peringkat tersebut, dapat disimpulkan bahwa perwakilan peserta pertukaran pelajar dari SMAN 1 Padang Panjang diwakili oleh Naura Arifa (NA) dan Rafifah Asylah Ashadi (RAA).

Pembahasan

Penerapan metode Analytical Hierarchy Process (AHP) dalam penelitian ini menunjukkan bahwa pendekatan berbasis hierarki mampu memberikan kerangka yang lebih terstruktur dalam proses seleksi peserta pertukaran pelajar di tingkat SMA. Sesuai dengan teori Saaty (1980),AHPmemungkinkan penyelesaian permasalahan kompleks melalui penyusunan hierarki, perbandingan berpasangan, dan perhitungan bobot prioritas. Validasi silang antara perhitungan manual dan aplikasi Super Decisions yang dilakukan memperlihatkan konsistensi hasil, sehingga memperkuat keandalan metode AHP dalam konteks pendidikan. Hal ini menegaskan bahwa penggunaan aplikasi tidak hanya berfungsi sebagai alat bantu teknis, tetapi juga sebagai instrumen yang meningkatkan efisiensi serta meminimalisasi potensi kesalahan manusia dalam pengolahan data yang kompleks. Temuan ini memperlihatkan aspek kebaruan, yaitu implementasi AHP pada seleksi siswa dengan tujuan meningkatkan transparansi, akurasi, dan objektivitas dalam pengambilan keputusan di sekolah. Dengan demikian, penelitian ini tidak hanya memberikan kontribusi metodologis melalui perbandingan manual dan digital, tetapi juga menawarkan nilai praktis yang relevan bagi institusi pendidikan dalam mengoptimalkan proses seleksi berbasis kriteria yang terukur.

KESIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa implementasi Sistem Pendukung Keputusan (SPK) dengan metode *Analytical Hierarchy*

Process (AHP) terbukti efektif dalam membantu proses seleksi peserta pertukaran pelajar di SMAN 1 Padang Panjang. Hasil perhitungan antara metode manual dan aplikasi Super Decisions menunjukkan kesesuaian hasil, yang menandakan bahwa aplikasi tersebut dapat diandalkan sebagai alat bantu pengambilan keputusan. Selain lebih efisien dan praktis dibandingkan metode manual yang cenderung memakan waktu dan rawan kesalahan, penerapan metode AHP melalui aplikasi ini juga terbukti meningkatkan transparansi dan objektivitas dalam proses seleksi. Dengan demikian, temuan dalam penelitian ini cocok diterapkan untuk mendukung seleksi peserta secara adil dan terstruktur.

DAFTAR PUSTAKA

- Ahmad Faisol, M. Aziz Muslim, & Hadi Suyono. (2014). Komparasi Fuzzy *AHP* dengan *AHP* pada Sistem Pendukung Keputusan Investasi Properti. *Jurnal EECCIS*, 8(2), 123–128.
- Annas, F., Ediana, D., Kurniawan, A., Wandira, R., & Zakir, S. (2021). Decision Support System in Project Tender Detrmination of Using Analytical Winner the Hierarchy Process (AHP) Method. Journal of Physics: Conference Series, 1779(1). https://doi.org/10.1088/1742-6596/1779/1/012006
- Efriyanti, L., Arifmiboy, & Khomarudin, A. N. (2022). Pemanfaatan Aplikasi Mobile Expert System Bagi Petani, Kelompok Tani dan Toko Saprotan untuk Meningkatkan Pengendalian Hama dan Penyakit Tanaman Cabe. *Open Community Service Journal*, 1(2), 88–94.

https://doi.org/10.33292/ocsj.v1i2.13

- Kardi. (2005). Analytic Hierarchy Process (AHP) Tutorial.
- Kurnia, D. (2021). Rekrutmen Karyawan Baru Berbasis Metode Analytical Hierarchy Process (AHP). Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, 9(2), 64–72. https://doi.org/10.21063/jtif.2021.v9.2. 64-72
- Naldo, M. N., Supriadi, S., Antoni Musril, H., & Sarwo Derta, S. D. (2022). Perancangan Informasi Sistem Pengelolaan Praktik Kerja Lapangan (PKL) di SMK GENUS Bukittinggi. Intellect: Indonesian Journal of Learning **Technological** and Innovation, 70-86. 1(1),https://doi.org/10.57255/intellect.v1i1. 46
- Nurhalizah Nst, E., Efriyanti, L., Zakir, S., & Supriadi. (2023). Sistem Pendukung Keputusan Rekomendasi Pemilihan Topik Judul Skripsi Menggunakan Metode Logika Fuzzy. *Jurnal Fasilkom*, 13(3), 464–470. https://doi.org/10.37859/jf.v13i3.6101
- Rozali, C., Zein, A., & Farizy, S. (2023).

 Penerapan Analytic Hierarchy Process (*AHP*) Untuk Pemilihan Penerimaan Karyawan Baru. *JITU: Jurnal Informatika Utama*, 1, 32–36.
- Sufi, H., Utomo, D. W., & Darmawati, G. (2023). Sistem Pakar Rekomendasi Menu Makanan Sehat Penderita Penyakit dengan Metode Forward Chaining. *Jurnal KomtekInfo*, 10, 8–14.
 - https://doi.org/10.35134/komtekinfo.v 10i1.320
- Zakir, S. (2015). Aplikasi Sistem Pakar Penghitungan Zakat Maal Menggunakan PHP/MySQL. *Jurnal Pendidikan Dan Informatika*.